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We construct an example of a Hamiltonian system with three degrees of freedom 
whose equilibrium position is, according to Amol’d’s theorem, stable for the ma- 

jority of initial conditions but is unstable in the sense of Liapunov. We investi- 
gate the problem of the formal stability of triangular Lagrange solutions. 

1. We analyze the motion of a body P with infinitesimal mass under the action of 
the Newtonian attraction of two bodies S and J with masses 1 - p and p. We assume 

that bodies ,S and J move on circular orbits relative to their center of mass. We in- 
vestigate the stability of the motion of body P under which it forms with bodies J’ and 
J an equilateral triangle, assuming that in its own perturbed motion it can leave the 
rotation plane of bodies S and J. The stated problem was examined in [l]. The inves- 

tigation was based on the transformation of the Hamilton function to normal form with 
a subsequent application of Chetaev’s instability theorem r2] and of Arnol’d’s theorem 
on the stability of multidimensional Hamiltonian systems p]. It has been proved that 

in the region of stability in the linear approximation 

0 < p < P* = 0.0385208 (1.1) 

the triangular motion in the three-body problem is stable for the majority (in the Lebes- 
gue measure sense) of initial conditions for all p except the two values P1 = 0.0242938 

and PLz = 0.0135166 for which Liapunov instability takes place. 

Let or and o2 (oi > 02) be the frequencies of plane oscillations of body P in the 
neighborhood of the triangular motion which satisfy the equation 

It was shown in [l] that if P # ~1 and p # PLz, then by a suitable choice of the coordi- 

nate system the Hamilton function describing the motion in the neighborhood of the 
triangular solution can be represented in the form 

H = L $ N $ H* (~‘ir pi) (1.2) 
Here 

L = olrl - 02r2 + r3 (1.3) 

N = C200r12 + cl10'l'2 + clolrl~3 + c020r22 i- cOllr2r3 + cO02r32 

- 

qi = 62ri sin ‘pi, pi = 1/q ens ‘Fi (i =1,2,3) 

0~2 (124011- 69601” + 81) 
02’0 z= 144 (1 - 2ois)” (1 - 502) 
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Function II* is analytic in the neighborhood of the origin, being of fifth order of small- 

ness relative to vi, pi. 

In [l] it was proved that when IL # pi and 11 # 112 the body P perpetually forms a 
triangle with bodies S and J , nearly equilateral, for the majority of sufficiently small 
deviations from the triangle’s vertex and for sufficiently small relative velocities. And, 
according to [3], for these initial conditions the motion of the body P is conditionally 
periodic with frequencies Ri = 8 (L + N) / i3ri (i = 1, 2, 3). Thus, with probability 
close to unity the triangular solution is stable. But it is not clear what the nature of the 

motion is for initial conditions corresponding to commensurable (or almost commen- 
surable) frequencies Ai . The system being investigated is three-dimensional. There- 
fore, Liapunov stability does not at all necessarily follow from stability for the majority 

of initial conditions. In [4] Arnol’d showed that in the case of commensurable frequen- 
cies Ai a multidimensional Hamilton system can be unstable. Below we construct a 

very simple example of such a kind specially for the case of the equilibrium position 
of an autonomous Hamiltonian system with three degrees of freedom. 

2. Let the variation with time of the variables rir ‘pi (i = 1, 2, 3) be described by 
differential equations with 2 Hamilton function 

Ii = ovary - 02rz + 03r3 + r1r3 - rlrz + rzr3 + H* (ri, cpi) (2.1) 

H * = ‘17-z V<sin (2q, -t 29, 4- (PA 

while the frequencies ai of the linearized system are positive and connected by the 

resonance relation 
20, - 20, + 03 = 0 (2.2) 

A system with Hamilton function (2.1) has the origin rl = r2 = r3 = 0 as the equilib- 

rium position. When investigating the motion in a small neighborhood of the origin 
the function H* can be considered as a perturbation of a system with the Hamilton 
function H” = H - 1f *. 

We will show that for a majority of sufficiently small initial values ri the equilib- 
rium position of the perturbed system is stable. According to [3], to do this it is suffic- 
ient to verify that the fourth-order determinant 

is nonzero for rl = r, = r3 = 0 . Expanding this determinant, we obtain 

D = wi2 -F_ wpa + oS2 + 20,~ + 20~0, - 20.& 

By substituting in the place of oa its expression in terms of o1 and wS from relation 
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(2.2), we have D = (oI + o# + 0. Thus, the equilibrium position is stable for a ma- 
jority of initial conditions, and the motion in a small neighborbo~ of the origin is con- 

ditionally periodic with frequencies 

AI = w1 + ra - r2, AZ = - Wa - rl + rg, A, = Ws + rz + rs 

We now show that the equilibrium position is Liapunov unstable. The proof is based 
on seeking an unboundedly increasing particular solution of the system of differential 

equations, co~es~nding to the Hamilton function (2.1) 

dr, 1 dt = dr, I dt = 2dr, / dt = --2r,r, V/r, COS 9 

dvIldt = Al+ r4 l&sin*, dcpzldt- Az+rl If<sin$ 

dqsldt = A3 -t- l /Z r1r2r3 -% sin 9 

q = 2rpl + 2% -trp, 

(2.3) 

It can be verified that the system of equations (2.3) admits of particular solutions for 
which rl = r, = zr,. Here r3 and Q satisfy the following system of differential equa- 
tions : dr, / dt =-y - 4r3c12 cm 49, d$ I dt = IOr,“‘” sin I& (2.4) 
For a solution chosen in this fashion the frequencies Ai satisfy the resonance relation 

2 AI i 2 ‘4% $- A3 = 0. From system (2.43 we obtain the following particular solution : 

r3 (t) == r3 (0) [1 - 6~~“’ (0) t]-e,‘z, $I =r ?r 

From the solution obtained we see that initial conditions arbitrarily close to the origin 

exist, for which the trajectory of system (2.33 goes arbitrarily far from the origin in 
course of time ; this requires a time of the order of rseJ * (0). 

3, We can approach the problem of the stability of the triangular solutions also 
from a formal point of view. The equilibrium position qi == pi -= o is said to be for- 

mally stable [S] if there exists a formal (i. e. possibly, divergent) power series G==&+ 
G +..., W-1 which serves as a sign-definite integral. This signifies that the coefficents 

of the series 
:I 

are identically zero, while the function G, & 0 and vanishes only at the origin ‘li = 
pi = 0. 

We construct the formal integral for a system with Hamilton function (1.2). In the 
Hamilton function we can normalize terms of the fifth, sixth, etc. orders by means of 
the Birkhoff transformation [6]. If p satisfies condition (1.1) of stability in the linear 

approximation and does not equal ~1 and ~2, then the Hamilton function (1.2). normal- 
ized in all arders, is written as 

H = L i_ N _i- R (rt, Cpi) (3.1) 

where L and .V are defined by equalities (1.3), and the formal series R commences 
with terms of the fifth order in r;s. The angular variables ‘pi are contained in R as 
combinations 

QFI + M’Fz -I- GYP, (3.2) 

where the kf are integers far which the equality 

IQW, - F;zo.z + h-3 = 0 (I k, 1 + I k, I 4 I k, 1 > 5)) (3.3) 
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is fulfilled. 
A system with the Hamiltonian (3.1) has the trivial integral H = con&, since H 

does not depend on time. Furthermore, taking (3.2) and (3.3) into account, it is not 
difficult to verify that the expression for L also is an integral. 

We set up the formal integral G in the form 

G = L4 + (H - L)2 (3.4) 

In the expansion G = Gs + GV + . . . the function Gs has the form Gs = L4 + Nz. 

Both terms on the right-hand side of this equality are nonnegative. Therefore, function 
Gs is sign-definite in the neighborhood of the origin if in the region rl a 0, rt > 0, 

r, >, 0 the system of equations 
L=O, N=O (3.5) 

has only the trivial solution rl = r2 = ~3 = 0. 

Fig. 1 

We investigate the system of equations (3.5). From the first equation L = 0 we 

find an expression for r3 in terms of r1 and r2 and we substitute it into the second 

equation. Then system (3.5) is rewritten as 

r3 = o,r, - qrl, ur12 $ br,r, $ cr22 = 0 (3.6) 
Here 

= = Cl00 - ClOl~l + CO02~12, b = cno + ClOl~2 - COll~l - 2 %t2%~2 

c = co20 + COllW2 + coo2(J)22 

The graphs of coefficients a, b, c are shown in Fig. 1. Coefficient a vanishes for the 

value 1~ = p3 = 0.00278 For this value of p the coefficients of the system of equations 

(3.6) are: 
o1 = 0.99042, o2 = 0.13811, b = - 0.39924, c = 0.56461 

and system (3.6) has the following solutions: 

1) r, is arbitrary, r2 = 0, r3 = - qrl 

2) r1 = I,4142 rz, r2 is arbitrary, r3 = - 1.26253 r,. 

These solutions do not lie inside the region rl >, 0, r2 >, 0, r3 > 0. Therefore, when 

1’ kla, the system (3.6) has only the trivial solution in this region. 
For values of 1’ not equal to 1~~ (i 1, 2, 3) and lying in the interval (1. l), the solu- 

tions can be written as: rl = ajr,, r9 zx Pjr*, r2 is arbitrary 

(i- l,Z),a,- (m-h 1/V -~ 4/1C) ! “0, _ a, =: (- b - jfbz - 4ac) / 2a, pj = at- a+ 

The system (3.6) has a solution in the region rl 3, 0, ‘rz > 0. rs > 0, if and only if the 
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quantities b2 - 4ac, aj, fij are simultaneously nonnegative. Calculations show that 
b2 - 4nc > 0 for all P from the interval (1.1). a, and b1 always have opposite signs, 

and the quantities a2 and 62 are simultaneously positive only when the inequalities 

are fulfilled. 

0.01~1913... < P < 0.016376... (3.7) 

Thus, the formal integral (3.4) is sign-definite for all p from the interval (1.1) except 
for those values which lie in interval (3.7) and, of course, for the value 11 ’ 111 which is 
excluded from consideration right from the very start. However, the value ,i~ z 11~ falls 

into interval (3.7). Therefore, the result obtained can be formulated as follows : the 
triangular Lagrange solutions of the restricted three-body problem in the three-dimen- 

sional circular case are formally stable for all IL in the region of stability in the linear 

approximation except for 11 = Pi and, possibly, for values of I_’ lying in the intervals 

o,ologu...< cl < pz, pz < p < O,Oi6376... (3.8) 

We should note that the value P = 0.00095388, corresponding to the Sun-Jupiter system, 
does not fall into intervals (3. 8), while the value P = 0,0121506 for the Earth-Moon 
system belongs to the first of these intervals. 

Formal stability allows us to assert that Liapunov instability does not appear if in the 
expansion of the Hamilton function we take into account terms of arbitrarily high (but 
finite) orders. But if trajectories exist on which body P leaves the triangle’s vertex, 
the motion on them takes place very slowly. 

In conclusion we note that the investigation of formal stability for values of 1_~ from 
intervals (3.8) could be carried out by applying the criterion obtained by Briuno [7]. 
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